

Fog-centric Localization for Ambient Assisted Living

Kriti Bhargava, Gary McManus, Stepan Ivanov

TSSG, WIT

⋖⋖∖⋧_⋎

Outline

- Behavioural tracking for Ambient Assisted Living (AAL)
- Fog Computing
- Edge Mining
- Proposed architecture
- Iterative Edge Mining (IEM)
- Evaluation
- Conclusions and Future work

Behavioural tracking for AAL

- Ageing population
- Dementia affects memory, orientation and mobility
- AAL use of ICT to improve quality of life
- Activity monitoring and localization of the user enables safe and independent living
- Applications: Indoor and outdoor activity monitoring, health monitoring, social inclusion
- Localization techniques
 - GPS units costly and energy intensive
 - Dense sensor networks (static and inertial) and cloud infrastructure - cumbersome

⁴◀┪♪

Fog Computing

- Improvements in the design and capabilities of network devices at the edge the IoT
- Extension of the cloud computing to network edges gateways, switches, mobile phones or sensors
- Improved energy efficiency and reduced latency
- Sensor analytics
 - WSN-based localization noisy measurements and dense deployments
 - Data Fusion signal specific algorithms
 - Artificial Neural Networks energy intensive learning
 - Edge Mining generic algorithms

Edge Mining

- Aim: Improve energy efficiency
- Light-weight data mining on sensor devices
- Based on the Spanish Inquisition Protocol (SIP)
 - Linear SIP point-in-time and rate of change
 - ClassAct decision-tree based activity classifier
 - Bare Necessities (BN) histogram encoding
- Edge Mining based approach for mobility tracking and localization in the context of AAL

⁴◀┓

Proposed architecture

- Two kinds of nodes wearable device and cloud gateway node
- Prior knowledge of topology and user behaviour
- Real-time activity tracking using on-board analysis using IEM
- Location estimated using the mobility traces and user speed
- Delay-tolerant communication of results to the gateway node
- Cloud-based learning to improve on-board analysis

(a)

(b)

Figure 1: (a) Cloud gateway node (b) Wearable activity tracker

Iterative Edge Mining (IEM)

- Activity state classifier
- Based on superimposition of BN and ClassAct
- Raw data \rightarrow signal distribution using BN
- BN events \rightarrow decision-tree classifier
- Input parameters decay factor (γ), threshold (ε) and heartbeat ($t_{heartbeat}$)
- Trade-off between classification frequency (localization accuracy) and resource utilization
- Captures the nature of signal unlike ClassAct

⁴◀◀⋧.)

Localization process using IEM

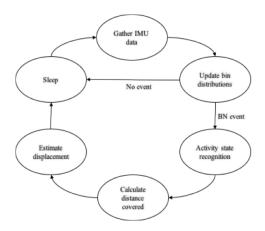


Figure 2: State diagram for on-board analysis on wearable device

Evaluation

- Metrics accuracy of classification, cumulative error in distance calculation, and reduction in classification frequency
- Input parameters γ , ε , $t_{heartbeat}$
- Data collection @frequency of 10Hz
 - Duration 16mins walk and stand (4 mins each)
 - Number of iterations 12 (train and test datasets)

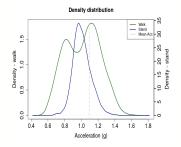


Figure 3: Density distribution for walk and stand acceleration values

••••

- Smoothing phenomenon effect of γ
- $\varepsilon = 0 \rightarrow$ highest sensitivity to changes in signal distribution

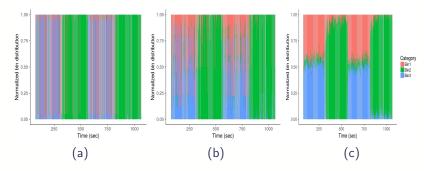


Figure 4: Smoothing effect of γ on signal distributions (a) $\gamma=0.05$ (b) $\gamma=0.5$ (c) $\gamma=0.95$

4

- Error Decay Factor (y) Threshold 0.15 0.35 0.55 0.75 0.95 (E) 0.199.36 99.31 99.17 99.12 99.01 99.36 99.31 98.75 0.4 99.17 98.77 0.7 99.36 99.19 98.75 98.59 97.95

TABLE I. CLASSIFICATION ACCURACY (%)

C5.0 decision-tree classifier in R
Combined effect of γ and ε

Figure 5: Classification accuracy for different values of γ and ε

- Cumulative error in distance and reduction in classification frequency
- Total distance covered in each experiment 600m

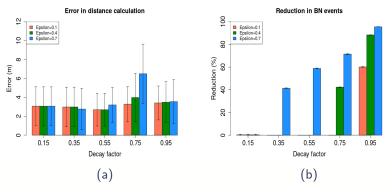


Figure 6: Variation in cumulative error and BN events with 95% CI

Conclusions and Future work

- Fog-centric WSN system for localization
- Reliance on self-tracking and sensor based analytics
- IEM based activity classification > 97.9%
- Cumulative error percent 0.4-1%
- Reduction in classification frequency upto 95%
- Real-time event detection with improved energy profile
- Ease of deployment
- Evaluate IEM for different mobility patterns.
- Transmission of alerts to caregivers

Thank You

(kbhargava, gmcmanus, sivanov) @tssg.org

