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Outline

Behavioural tracking for Ambient Assisted Living (AAL)
Fog Computing

Edge Mining

Proposed architecture

Iterative Edge Mining (IEM)

Evaluation

Conclusions and Future work
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Ageing population A

Dementia - affects memory, orientation and mobility
AAL - use of ICT to improve quality of life

Activity monitoring and localization of the user - enables safe
and independent living

Applications: Indoor and outdoor activity monitoring, health
monitoring, social inclusion
Localization techniques

— GPS units - costly and energy intensive
— Dense sensor networks (static and inertial) and cloud
infrastructure - cumbersome
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Fog Computing

Improvements in the design and capabilities of network
devices at the edge the loT

Extension of the cloud computing to network edges -
gateways, switches, mobile phones or sensors

Improved energy efficiency and reduced latency

Sensor analytics

WSN-based localization - noisy measurements and dense
deployments

Data Fusion - signal specific algorithms

Artificial Neural Networks - energy intensive learning
Edge Mining - generic algorithms

4/14



Edge Mining

Aim: Improve energy efficiency

Light-weight data mining on sensor devices
Based on the Spanish Inquisition Protocol (SIP)

— Linear SIP - point-in-time and rate of change
— ClassAct - decision-tree based activity classifier
— Bare Necessities (BN) - histogram encoding

Edge Mining based approach for mobility tracking and
localization in the context of AAL
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Proposed architecture

Two kinds of nodes - wearable device and cloud gateway node
Prior knowledge of topology and user behaviour

Real-time activity tracking using on-board analysis using IEM
Location estimated using the mobility traces and user speed
Delay-tolerant communication of results to the gateway node
Cloud-based learning to improve on-board analysis

o")

Figure 1: (a) Cloud gateway node (b) Wearable activity tracker
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lterative Edge Mining (IEM)

Activity state classifier

Based on superimposition of BN and ClassAct
Raw data — signal distribution using BN

BN events — decision-tree classifier

Input parameters - decay factor (), threshold (&) and
heartbeat (tpeartbeat)

Trade-off between classification frequency (localization
accuracy) and resource utilization

Captures the nature of signal unlike ClassAct
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Localization process using |[EM

Update bin
distributions

Estimate Activity state

displacement recognition

Figure 2: State diagram for on-board analysis on wearable device
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Evaluation
V 4

e Metrics - accuracy of classification, cumulative error in ;
distance calculation, and reduction in classification frequency e
e Input parameters - 7, €, theartbeat \
e Data collection - @frequency of 10Hz
— Duration - 16mins - walk and stand (4 mins each)
— Number of iterations - 12 (train and test datasets)

Density distribution

Mean Acc
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Figure 3: Density distribution for walk and stand acceleration values
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e Smoothing phenomenon - effect of ~
e ¢ =0 — highest sensitivity to changes in signal distribution
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Figure 4: Smoothing effect of v on signal distributions (a) v = 0.05 (b)
v=0.5(c) y=0.95
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e (5.0 decision-tree classifier in R

e Combined effect of v and ¢

TABLE 1. CLASSIFICATION ACCURACY (%)
Error Decay Factor
Threshold y 1

0.15 0.35 0.55 0.75 0.95
(&)
0.1 99.36 99.31 99.17 99.12 99.01
0.4 99.36 99.31 99.17 98.77 98.75
0.7 99.36 99.19 98.75 08.59 97.95

Figure 5: Classification accuracy for different values of v and &
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Figure 6: Variation in cumulative error and BN events with 95% Cl
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Conclusions and Future work iu

Fog-centric WSN system for localization

Reliance on self-tracking and sensor based analytics
IEM based activity classification - > 97.9%
Cumulative error percent - 0.4 — 1%

Reduction in classification frequency - upto 95%
Real-time event detection with improved energy profile
Ease of deployment

Evaluate |IEM for different mobility patterns.

Transmission of alerts to caregivers
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