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Abstract—Ambient Assisted Living (AAL) is a novel discipline 
that aims at improving the quality of life for all generations, 
especially the elderly, with the help of information and 
communication technologies. Behavioral tracking AAL systems 
necessitate the monitoring and understanding of daily activities 
and preferences of the user for design of customized, context-
aware services and detection of behavior anomalies. Localization 
of the user is, therefore, key to facilitate real-time activity 
monitoring in AAL applications. Although several localization 
techniques have been proposed to date, majority of them incur a 
high operational cost owing to dependency on dense sensor 
deployments for ambient intelligence or use of expensive hardware 
such as GPS receivers. In this paper, we propose a low-cost 
Wireless Sensor Networks (WSN) system, comprising of a single 
wearable device and a cloud gateway, for outdoor localization in 
the context of AAL. With the inception of the Fog Computing 
paradigm, we consider the implementation of a light-weight data 
mining technique, Iterative Edge Mining (IEM), on the wearable 
device for on-board activity recognition. IEM is based on the 
classification of signal distributions to enable real-time mobility 
tracking as the user moves around an environment. Given the 
topology information and the activity sequence generated by the 
algorithm, we estimate the user location by associating the distance 
covered over time with the orientation values. Alerts are signaled 
locally upon detection of behavior anomalies and transmitted to 
the gateway node using a delay-tolerant communication 
framework. As such, IEM runs autonomously on the sensor node 
without interaction with external objects, thereby, improving the 
responsiveness as well as the operational cost of our system. We 
evaluate the performance of IEM in terms of localization accuracy 
in an outdoor environment. 
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I.  INTRODUCTION 
With advancing age, the elderly often experience physical 

disabilities and require support with mobility and the activities 
of daily living. Moreover, they may develop some form of 
Dementia, a chronic syndrome that causes deterioration in the 
cognitive function beyond what might be otherwise expected 
with ageing. This, in turn, leads to challenging behavioral and 
psychological changes such as repetition, aggression, agitation 
and psychosis. Alzheimer's is the most prevailing form of 
Dementia that affects the short-term memory, orientation and 
intellectual capacity of an individual [1]. It may result in loss of 
identity, thereby, increasing distress for the patient as well as the 

caregivers. Wandering is a common symptom for Alzheimer 
patients that poses serious threat to their safety and may lead to 
traumatic experiences.  Personalized monitoring and care of the 
elderly is, therefore, important to assist them with daily activities 
and ensure their well-being. Ambient Assisted Living (AAL) is 
a recent trend that combines Information and Communication 
Technologies (ICT) with the social environment with a view to 
improve the quality of life for all generations, primarily the 
ageing population with cognitive disabilities [2]. An important 
aspect of AAL is localization of the user to enable activity 
monitoring for safe and independent living and minimize the 
risk of wandering [3]. AAL solutions have the potential to not 
only allow patients to restore their usual routine but also to 
reduce the burden on caregivers. Although a few activity 
tracking systems have been proposed for AAL, their 
implementation is constrained due to the high operational cost 
incurred by use of expensive hardware such as GPS modules or 
dense sensor deployments and cloud infrastructure required for 
ambient sensing, communication and data analysis. 

Meanwhile, owing to the growth in ICT, there has been a 
tremendous improvement in the design and computational 
capabilities of small devices that constitute edge of the network 
in the Internet of Things (IoT). A new networking paradigm, Fog 
Computing, proposes a partial migration of intelligence away 
from the cloud towards the network edges [4]. That is, Fog 
Computing aims at facilitating localized data processing and 
event detection at the end-user terminals. The concept has 
gained importance owing to its ability to efficiently utilize the 
in-network resources while minimizing dependency on the 
cloud infrastructure. It not only reduces the operational cost but 
also improves the responsiveness of the system for alert 
generation. Over the past few years, numerous interpretations of 
fog nodes within IoT have been discussed. While some 
approaches propose the use of computational resources at edge 
devices such as network switches [5], others suggest the use of 
free computation slots on user mobile phones [6]. Recent studies 
have further brought down the concept of Fog Computing to 
wireless, battery-operated sensor devices that sit at the edge of 
Wireless Sensor Networks (WSN). Edge Mining is a novel 
approach that suggests the implementation of light-weight data 
mining tasks on the sensor devices [7]. While resource-intensive 
network learning is performed on the cloud, minor computations 
carried out at the sensor nodes enable real-time event detection. 
Furthermore, Edge Mining algorithms improve the energy 
efficiency of WSN by reducing packet transmissions to the 
cloud gateway via localized data reduction and, in turn, increase 
operational time of the system. 



In this paper, we implement fog-enabled mobility tracking 
within WSN for user localization in the context of AAL. Our 
WSN system consists of a low-cost wearable activity tracker and 
a cloud-gateway, and assumes prior knowledge of the 
application environment and user-specific information. The 
wearable device consists of an Inertial Motion Unit (IMU) that 
gathers accelerometer and gyroscope data as the user moves 
around the application environment. Real-time analysis of the 
data is carried out on the device itself using a Fog Computing 
approach called Iterative Edge Mining (IEM), proposed by the 
authors in [8]. IEM is based on the Edge Mining algorithms and 
performs activity state recognition using a decision-tree 
classifier on signal distributions. Given the topology information 
of the environment, the mobility pattern produced by IEM is 
used along with the gyroscope data to determine user location. 
Alerts are generated locally at the occurrence of unexpected 
events and transmitted to a cloud gateway using delay-tolerant 
communication. While our device performs localization 
autonomously, the resource-intensive network learning for IEM 
is performed on the cloud to modify the parameters for on-board 
analytics, if necessary, and tune the results according to changes 
in application environment and requirements. Results of the 
learning are sent back to sensor device, in a delay-tolerant 
manner, to adjust the analytic model. The performance of our 
system has been evaluated for outdoor localization using 
analysis in R. 

The remainder of the paper is organized as follows. In 
section II, we discuss the related work. The application scenario 
proposed solution is presented in section III. The evaluation of 
our system is discussed in section IV followed by the 
conclusions in section V. 

 

II. RELATED WORK 
In this section, we present an overview of some of the 

localization techniques and AAL solutions, proposed to date. 
We also discuss the state-of-the-art in sensor analytics with 
emphasis on the Edge Mining approach that forms the basis of 
IEM. 

A. Localization Techniques 
So far, numerous approaches have been proposed for 

localization in both outdoor and indoor applications. The use of 
Global Positioning Systems (GPS) based systems is well-known 
for outdoor positioning owing to the high availability of GPS 
modules in current IoT devices and the positioning accuracy. 
However, GPS units are expensive as well as energy exhaustive, 
thereby, affecting the lifetime of a system. Additionally, their 
performance deteriorates significantly in crowded and indoor 
areas due to the absence of line of sight to GPS satellites. 
Consequently, cooperative techniques have been proposed that 
use hybrid positioning systems to improve the performance of 
GPS systems [9]. Alternatively, radio frequency based solutions 
have been proposed for localization in indoor environments such 
as smart buildings as discussed in [10]. The role of WSN for 
node localization has also been explored. The techniques 
proposed are either anchor-based where fixed nodes with known 
GPS coordinates are used to estimate the coordinates of mobile 
nodes using different ranging techniques [11] or anchorless that 

aim at determining only the relative distance between two nodes. 
Majority of the solutions, however, rely on dense sensor 
networks for accurate sensing and communication making the 
network installation a tedious task. In recent years, Pedestrian 
Dead Reckoning (PDR) systems, comprising of wearable 
inertial sensors for self-tracking, have been designed to calculate 
user position based on the past estimates and displacement over 
short intervals of time. Personalized monitoring with PDR 
systems allows better understanding of the user behavior and 
mobility patterns for customization of services. A 3D 
localization technique using multiple wearable sensors has been 
presented in [12]. The system monitors the spatial location of 
users based on the orientation of body segments and lower limb 
movements. Although, the experimental results show an 
accuracy of up to 99%, the suitability of the approach is arguable 
due to use of multiple sensors that may cause discomfort. 
Moreover, standalone PDR systems often accumulate error over 
time due to sensor drift. Their use is, therefore, combined with 
contextual information or low-cost beacons that facilitate 
recalibration as shown in [13]. 

B. Ambient Assisted Living 
With improvements in the average life-expectancy of people 

worldwide, there has been a simultaneous increase in the number 
of people suffering from cognitive disabilities, such as 
Dementia, that appear with age. Dementia is a progressive 
disorder that deteriorates the memory, comprehension and 
behavior of an individual. The most common cause of Dementia 
is the Alzheimer’s disease that occurs owing to the death of 
nerve cells and loss of brain tissue. It has a severe impact on the 
short-term memory, orientation and mobility of the patient, 
increasing the risks associated with wandering [14]. This urges 
the development of smart solutions to monitor the health and 
activities of the patients, and provide timely care. AAL proposes 
the use of ICT to assist people, especially the elderly, with daily 
activities and mobility to allow independent living and ensure 
their well-being. An activity recognition and assessment 
technique using the smart home technology has been discussed 
in [15]. The system proposes dense sensor deployment inside the 
apartment to monitor user interaction with objects of interest. 
Machine learning is performed on the sequence of sensor events 
to classify the daily activities such as cooking, cleaning, eating 
and telephone use. Furthermore, the authors propose a method 
to develop generalized models corresponding to each activity 
that abstract over different application scenarios and residents 
[16]. More recently, activity trackers have replaced the use of 
static sensors to personalize care and improve behavior analysis 
for the individuals. In [17], wearable devices consisting of 
environmental and inertial sensors have been designed to 
continuously monitor health status and mobility of the elderly. 
The system combines GPS and BLE technologies to assist in 
outdoor and indoor mobility respectively. An outdoor navigation 
system that facilitates independent visits to the exhibition for the 
cognitively impaired has been discussed in [18]. The approach 
aims at social inclusion of the individuals under the umbrella of 
AAL. Although, the solutions perform reasonably well, their 
implementation is challenging due to the high operational costs. 
To ensure validity and usability of AAL solutions, five 
evaluation metrics including accuracy, availability, installation 
complexity and user acceptance have been outlined in [19]. 



C. Sensor Analytics 
With advances in the IoT, there has been an immense 

improvement in the design and computational capability of 
sensor devices that constitute WSN. Traditionally constrained to 
sense and send, the tasks assigned to these devices nowadays 
incorporate an analytic component. WSN-based localization, for 
instance, is a form of sensor analytics that has been implemented 
to improve the context of sensor data. Other approaches such as 
Data Fusion [20] and Edge Mining [7] utilize the on-board 
sensor resources for reducing data redundancy within the 
network with an aim to improve the quality of data exchange. 
Reduced packet transmissions to the cloud gateway, in turn, 
improves the energy profile of the network. Furthermore, 
mapping of Artificial Neural Networks (ANN) on top of the 
existing WSN hardware has been proposed to facilitate 
classification and prediction tasks within the network [21]. We 
base our localization approach on the Edge Mining algorithms 
that inherent a certain degree of intelligence and allow real-time 
event detection on the sensor devices as discussed below. 

1) Edge Mining 
 

The aim of Edge Mining is to improve the energy efficiency 
of WSN by reducing data communication to the cloud gateway 
or sink node. Accordingly, it suggests the implementation of 
light-weight data mining tasks on the sensor devices for 
localized data reduction. Edge Mining has been realized using 
the Spanish Inquisition Protocol (SIP), described in [22]. SIP 
proposes the use of a shared approximation model between the 
sensor devices and sink node to locally predict the expected 
application state at sink based on the past estimates. A packet 
containing the new state value is transmitted only if the new state 
differs from the estimated value by more than a threshold. Three 
instantiations of general-SIP have been used for the design of 
Edge Mining algorithms, namely Linear-SIP (L-SIP), ClassAct 
and Bare Necessities (BN), as presented in [7]. The algorithms 
differ based on the representation of application states. L-SIP 
encodes the state as a point-in-time value and rate of change. The 
state value is calculated at the sensor node per sensing cycle and 
compared to the estimated value at sink node. An event is 
generated if the difference between the two exceeds a user-
specified threshold. ClassAct is a decision tree-based activity 
classifier that models the state value as a smoothed probability 
distribution over a given set of activities [23]. The state is 
simplified to the index of the most probable activity and 
transmitted to the sink node if it varies from the previous 
estimate. The state recognition, however, relies on a fixed set of 
probabilistic moments and may not distinguish signals with 
different distributions but same feature values. The BN approach 
is primarily designed for applications that only require the 
summary of data over time [24]. It represents the state as a 
distribution across non-overlapping bins, where each bin 
corresponds to a range of value the variable can take, and 
generates events based on changes in the bin distributions. The 
ClassAct and BN algorithms discard majority of the raw data 
and significantly reduce packet transmissions to sink. The two 
approaches are, therefore, preferred over L-SIP for applications 
that do not require the reconstruction of the original signal. 

 

III. PROPOSED SOLUTION 
 In this work, we consider the challenge of mobility 

monitoring and outdoor positioning for the elderly suffering 
from Alzheimer's to detect behavioral anomalies and alleviate 
the risk of wandering. Although numerous solutions have 
addressed the issue of outdoor localization in the past, the 
technologies proposed present several implementation 
challenges. For instance, use of expensive GPS modules for each 
user is impractical due to significant operational costs. 
Alternatively, installation of distributed systems for pervasive 
computing is cumbersome and labor intensive. Considering the 
evaluation metrics discussed in [19], we propose a low-cost 
WSN-based solution for mobility tracking and user localization. 
Our system comprises of only two nodes - a wearable device and 
cloud gateway, and relies on self-measurements rather than the 
range-based techniques, thereby, ensuring ease of deployment. 
The wearable device is designed to gather IMU data and 
performs on-board data processing using IEM for real-time 
activity recognition as the user moves around the environment. 
Given the topology information, the user location is estimated 
using the mobility model generated by the algorithm after short 
intervals of time. The above analysis is performed autonomously 
on the sensor device without interaction with external objects. 
Alerts are signaled at the occurrence of unexpected events such 
as detection of mobility patterns corresponding to wandering 
behavior. Furthermore, a delay-tolerant communication 
framework is used to transmit results of the analysis to the cloud 
gateway. Cloud-based analysis facilitates the implementation of 
complex learning techniques to modify input parameters, 
performance metrics and user information for on-board analysis, 
if necessary, to tune the performance according to the 
application requirements. For instance, while some applications 
may only require coarser information such as user presence in 
specific zones, others may require a more precise location as in 
case of fall detection to facilitate immediate care. The updated 
model is, in turn, transmitted to the user device in a delay-
tolerant manner, thereby, eliminating the need for continuous 
Internet connectivity. 

 Fig. 1 illustrates the design of our prototype devices - 
wearable activity tracker and cloud gateway node. The main 
component of the wearable is CM5000 [25] mote that consists 
of a MSP430 processor and CC2420 radio module. A 10 degrees 
of freedom IMU consisting of the MPU6050 IC [26], is 
connected externally to the CM5000 board to measure 
acceleration and orientation of the user. The components are 
soldered together on a PCB and placed inside a pelican casing. 
The device is powered up using 2 AA batteries. A light-weight 
TinyOS [27] program runs on the device for periodic data 
collection and analysis using IEM. While our system runs 
autonomously, it assumes prior knowledge of user-specific 



information, such as the average pace and normal activity levels, 
and topology of the application environment using initial 
supervised learning. The distance travelled by the person is 
accordingly calculated using the time series data generated by 
IEM and the average speed of the person. Given the topology 
and gyro data, user can then be localized within the environment 
using the displacement measure. Alerts are signaled upon 
identification of significant deviations from the normal 
behavior. The results of analysis are stored locally in the flash 
memory of the device as the user moves around and transmitted 
to the cloud gateway, hosted indoors, once the user is in its 
vicinity. The gateway node (fig. 1(b)) consists of a CM5000 
mote connected to a Raspberry Pi 2B [28] module. The data is, 
in turn, uploaded on the cloud for further learning using a Wi-Fi 
module connected to the Pi. Once the learning is complete, the 
updated parameters are transmitted back to the wearable device 
in a similar manner. Our system design, thus, ensures the 
autonomy of user mobility while providing timely interventions 
when required. 

A. Iterative Edge Mining 
A key component of our device based analytics is activity 

state recognition that is performed by the IEM [8] algorithm. 
IEM is a fog-centric, sensor analytics approach that is 
implemented by superimposing two Edge Mining algorithms - 
BN and ClassAct, on a single node. IEM reads the raw 
acceleration values from the IMU and converts it into a smooth 
signal distribution using BN, per sensing cycle. An intermediate 
event is detected if the change in any bin distribution is 
significant. The sequence of BN events is fed as input to the 
ClassAct algorithm that determines the user activity state. The 
interaction between the two algorithms is controlled by the value 
of three input parameters - decay factor (g), error threshold (e) 
and heartbeat (theartbeat) that are determined using cloud-based 
analysis. The g parameter ranges between 0-1 and is introduced 
to smooth the signal distributions on the assumption that the 
application state does not change abruptly. A higher value of g, 
increases the weight of past estimates and reduces the 
fluctuations in the distribution. The resultant smoothing leads to 
fewer BN events and classification checks. This improves the 
energy efficiency and, in turn, the lifetime of the device. The 
reduced frequency of classification, however, also results in an 
increase in misclassifications and latency in detecting activity 
changes. The value of e is determined based on the user-
specified accuracy requirements. While the e value does not 

affect the nature of signal, it sets the percentage change in bin 
distributions from previous estimates that is considered 
significant for classification. A higher value of e ignores the 
small fluctuations in the bin distributions, leading to reduced BN 
events. Accordingly, higher values of both g and e are preferred 
to optimize the resource utilization on sensor nodes when the 
accuracy requirements are not rigid. A heartbeat mechanism 
using a parameter theartbeat can be used to set the maximum time 
difference between two consecutive BN events and ensure 
periodicity of classification checks, especially in case of large 
decay and threshold values, if required. In [8], IEM has been 
proposed for activity monitoring and behavior analysis in the 
context of Precision Dairy Farming. The performance evaluation 
shows the effect of input parameters on classification accuracy 
and number of BN events for different mobility patterns. Once 
the activity state for a BN event is determined, the distance 
traveled since the previous event is calculated for walking 
activities using the average pace of the person. The user 
displacement is estimated with the help of gyroscope data, and 
the updated state and location is recorded in the flash memory 
of the device. Fig. 2 shows the state diagram for the on-based 
analytics on the wearable devices.  

 
 

 

Fig. 1. (a) Cloud gateway node (b) Wearable activity tracker 

    (a)                    (b) 

 

Fig. 2. State diagram for on-board analysis on wearable devices 



IV. EVALUATION 
We evaluate the performance of IEM in terms of accuracy of 

classification, cumulative error in distance calculation and 
reduction in classification frequency (BN events) using 
acceleration data collected outside our laboratory using the 
wearable device shown in fig 1(a). The device was hand-held in 
front of the body and data was collected at a frequency of 10Hz 
by a single user for a duration of 16 minutes by alternating 
between walk and stand activities every four minutes. The 
experiment was repeated for a total of 12 times and the distance 
covered in each run was 600m (300m*2). We correct the raw 
data collected during the experiments by removing the offset 
along each axis and calculate the net acceleration (square root of 
the sum of squares of each component) to use as input for our 
algorithm. Of the 12 data sets collected, we reserve 6 files for 
training the classifier and the other 6 files for testing the model 
using analysis in R. The mobility traces in training sets are used 
to calculate the average pace of the user through supervised 
learning. Moreover, the training data is used to understand the 
distribution of acceleration values to define bins for the BN 
algorithm. Fig 3. shows the density distribution of walk and 
stand activities for one training set. As is evident, there is a 
significant overlap between walk and stand data that may lead to 
inaccuracies in the classifier. It is, therefore, imperative to 
carefully define the bins such that the classification errors and 
latency in detecting activity state changes is minimized. Since 
the distribution of stand values is narrow, we use the 68-95-99.7 
rule for normal curves and define three bins based on the mean 
and standard deviation over stand data.  

As discussed in section III, while the error threshold e only 
regulates the interaction between BN and ClassAct, the decay 
factor g also influences the nature of signal distribution. Fig 4. 
illustrates the smoothing phenomenon, for the same training set 
as above, across different values of g. Although the parameter 
value depends on decay half-life [24], we have chosen three 
random values to show the change in distributions for a wider 
range of g. As expected, the effect of the previous distributions 
on the current estimate is negligible for very small value of g 
(fig. 4(a)), resulting into coarse bin distributions. The 
smoothness of the distributions increases for higher g values (fig. 
4(b) and 4(c)) due to small changes in bin distributions per 
sensing cycle. The extent of smoothing affects the frequency of 
BN events and, in turn, the localization accuracy. We consider 
the performance of IEM for different g and e pairs. We build 
C5.0 decision-tree classifiers using all data instances from the 6 
training files (i.e. e=0) for five different values of g. The 
performance of each classifier is tested with the remaining 6 files 
using the respective g values paired with three different e values. 
The mean classification accuracy of IEM for walk and stand 
activities across all test files, for different parameter values, is 
presented in table I. IEM achieves high accuracy for all g and e 
pairs. The values illustrate the expected drop in accuracy with 
increased smoothing in the signal distributions. Moreover, while 
the accuracy is same across all e values for small g, it decreases 
slightly with increase in e for higher values of g. This is because 
the frequency of classification for the former is primarily 
governed by g as even the slightest changes in the bin 
distributions are detected as BN events. An increase in g value, 
however, increases the smoothness of the curve and relies on the 

e value to capture the significant changes. The effect of g and e 
on the accuracy of distance calculation and classification 
frequency is shown in fig 5. Instead of calculating the distance 
travelled for short intervals of walk, we estimate the total 
distance covered over 8 minutes (4+4mins) using the average 
pace. The cumulative error over a stretch 600m is shown in fig. 
5(a). Our approach performs reasonably well for all different 
parameter values with the error ranging from 0.4-1%. The error 
in estimate increases with increase in e due to latency in 
detecting state changes and reduced periodicity of distance 
calculation. Although, the classification accuracy decreases with 
increasing g value, a consequent increase in the cumulative error 
is not recorded. This is because the error is calculated based on 
the relative time spent in each state which may be identical to 
the raw data despite the misclassifications. Fig. 5(b) displays the 
reduction in BN events across different g and e values. While the 
reduction is insignificant for small parameter values, it increases 
considerably for higher values of both g and e as expected. A 
reduction of 95% is achieved for a g and e value of (0.95, 0.7). 
The values of input parameters can, thus, be chosen to balance 
the trade-off between accuracy and energy utilization on the 
sensor nodes according to the user-specified requirements. A 
heartbeat mechanism can be implemented to ensure periodicity 
of updates at large g and e values, if required.       

 
 

TABLE I.  CLASSIFICATION ACCURACY (%) 

Error 
Threshold 

(e) 

Decay Factor (g) 

0.15 0.35 0.55 0.75 0.95 

0.1 99.36 99.31 99.17 99.12 99.01 

0.4 99.36 99.31 99.17 98.77 98.75 

0.7 99.36 99.19 98.75 98.59 97.95 

Fig. 3. Density distribution for walk and stand acceleration values 

 



 

V. CONCLUSIONS 
In this paper, we present the design of our low-cost WSN 

system for mobility monitoring and outdoor localization of 
Alzheimer’s patients. Our system consists of an activity tracker 
and gateway node, and relies on self-tracking and sensor based 
analytics to perform autonomous, real-time localization as the 
user moves around an application environment. We discuss our 
on-board analytics approach along with the IEM algorithm that 
is used for on-board activity recognition. The mobility traces 
generated by IEM are used to calculate the distance traveled over 
short intervals of time to localize the user within the given 
topology. Moreover, the activity sequence helps in 
understanding the mobility pattern of the user and enables 
detection of behavior anomalies to mitigate the risk of 
wandering. The performance of IEM has been evaluated in terms 
of accuracy of classification of stand and walk activities, 
cumulative error in distance calculations and reduction in 

localization frequency. The results show a classification 
accuracy above 97.9% and cumulative error percent between 
0.4-1 across different values of the input parameters. Although 
the reduction in localization frequency is negligible for small 
values of input parameters, reduction up to 95% has been 
recorded. Fewer calculations can significantly improve the 
energy profile of sensor devices, especially for a large set of 
application states. In future, we plan to evaluate the performance 
of IEM for different mobility patterns and indoor applications. 
We will also look at how the alerts can be generated and 
transmitted to the caregivers in case the patients diverge from 
their normal routes or wander too far. 
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